Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

Identifieur interne : 001F77 ( Main/Exploration ); précédent : 001F76; suivant : 001F78

Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

Auteurs : Z Lewis Liu [États-Unis] ; Menggen Ma ; Mingzhou Song

Source :

RBID : pubmed:19517136

Descripteurs français

English descriptors

Abstract

Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)(+) for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under the inhibitor stress.

DOI: 10.1007/s00438-009-0461-7
PubMed: 19517136
PubMed Central: PMC3025311


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.</title>
<author>
<name sortKey="Liu, Z Lewis" sort="Liu, Z Lewis" uniqKey="Liu Z" first="Z Lewis" last="Liu">Z Lewis Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA. ZLewis.Liu@ars.usda.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Menggen" sort="Ma, Menggen" uniqKey="Ma M" first="Menggen" last="Ma">Menggen Ma</name>
</author>
<author>
<name sortKey="Song, Mingzhou" sort="Song, Mingzhou" uniqKey="Song M" first="Mingzhou" last="Song">Mingzhou Song</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19517136</idno>
<idno type="pmid">19517136</idno>
<idno type="doi">10.1007/s00438-009-0461-7</idno>
<idno type="pmc">PMC3025311</idno>
<idno type="wicri:Area/Main/Corpus">001F35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F35</idno>
<idno type="wicri:Area/Main/Curation">001F35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F35</idno>
<idno type="wicri:Area/Main/Exploration">001F35</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.</title>
<author>
<name sortKey="Liu, Z Lewis" sort="Liu, Z Lewis" uniqKey="Liu Z" first="Z Lewis" last="Liu">Z Lewis Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA. ZLewis.Liu@ars.usda.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ma, Menggen" sort="Ma, Menggen" uniqKey="Ma M" first="Menggen" last="Ma">Menggen Ma</name>
</author>
<author>
<name sortKey="Song, Mingzhou" sort="Song, Mingzhou" uniqKey="Song M" first="Mingzhou" last="Song">Mingzhou Song</name>
</author>
</analytic>
<series>
<title level="j">Molecular genetics and genomics : MGG</title>
<idno type="eISSN">1617-4623</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cellulose (metabolism)</term>
<term>Directed Molecular Evolution (MeSH)</term>
<term>Ethanol (metabolism)</term>
<term>Fermentation (genetics)</term>
<term>Flavones (metabolism)</term>
<term>Flavones (toxicity)</term>
<term>Furaldehyde (metabolism)</term>
<term>Furaldehyde (toxicity)</term>
<term>Gene Expression (drug effects)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Glycolysis (drug effects)</term>
<term>Lignin (metabolism)</term>
<term>RNA, Messenger (analysis)</term>
<term>RNA, Messenger (biosynthesis)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (analyse)</term>
<term>ARN messager (biosynthèse)</term>
<term>Cellulose (métabolisme)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Fermentation (génétique)</term>
<term>Flavones (métabolisme)</term>
<term>Flavones (toxicité)</term>
<term>Furfural (métabolisme)</term>
<term>Furfural (toxicité)</term>
<term>Glycolyse (effets des médicaments et des substances chimiques)</term>
<term>Lignine (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Éthanol (métabolisme)</term>
<term>Évolution moléculaire dirigée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
<term>Ethanol</term>
<term>Flavones</term>
<term>Furaldehyde</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>Glycolysis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Expression des gènes</term>
<term>Glycolyse</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fermentation</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fermentation</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Flavones</term>
<term>Furfural</term>
<term>Lignine</term>
<term>Éthanol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Flavones</term>
<term>Furaldehyde</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Flavones</term>
<term>Furfural</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Directed Molecular Evolution</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Regulatory Networks</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Réseaux de régulation génique</term>
<term>Évolution moléculaire dirigée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)(+) for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under the inhibitor stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19517136</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1617-4623</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>282</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular genetics and genomics : MGG</Title>
<ISOAbbreviation>Mol Genet Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>233-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00438-009-0461-7</ELocationID>
<Abstract>
<AbstractText>Lignocellulosic biomass conversion inhibitors, furfural and HMF, inhibit microbial growth and interfere with subsequent fermentation of ethanol, posing significant challenges for a sustainable cellulosic ethanol conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However, limited knowledge is available about mechanisms of the tolerance and the detoxification of the biomass conversion inhibitors. Using a robust standard for absolute mRNA quantification assay and a recently developed tolerant ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049, we investigate pathway-based transcription profiles relevant to the yeast tolerance and the inhibitor detoxification. Under the synergistic inhibitory challenges by furfural and HMF, Y-50049 was able to withstand the inhibitor stress, in situ detoxify furfural and HMF, and produce ethanol, while its parental control Y-12632 failed to function till 65 h after incubation. The tolerant strain Y-50049 displayed enriched genetic background with significantly higher abundant of transcripts for at least 16 genes than a non-tolerant parental strain Y-12632. The enhanced expression of ZWF1 appeared to drive glucose metabolism in favor of pentose phosphate pathway over glycolysis at earlier steps of glucose metabolisms. Cofactor NAD(P)H generation steps were likely accelerated by enzymes encoded by ZWF1, GND1, GND2, TDH1, and ALD4. NAD(P)H-dependent aldehyde reductions including conversion of furfural and HMF, in return, provided sufficient NAD(P)(+) for NAD(P)H regeneration in the yeast detoxification pathways. Enriched genetic background and a well maintained redox balance through reprogrammed expression responses of Y-50049 were accountable for the acquired tolerance and detoxification of furfural to furan methanol and HMF to furan dimethanol. We present significant gene interactions and regulatory networks involved in NAD(P)H regenerations and functional aldehyde reductions under the inhibitor stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Z Lewis</ForeName>
<Initials>ZL</Initials>
<AffiliationInfo>
<Affiliation>U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA. ZLewis.Liu@ars.usda.gov</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Menggen</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Mingzhou</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U54 CA132383</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 CA132383-020004</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 CA132383-03</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mol Genet Genomics</MedlineTA>
<NlmUniqueID>101093320</NlmUniqueID>
<ISSNLinking>1617-4623</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501187">5,6,2',3',5',6'-hexamethoxyflavone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047309">Flavones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3K9958V90M</RegistryNumber>
<NameOfSubstance UI="D000431">Ethanol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>DJ1HGI319P</RegistryNumber>
<NameOfSubstance UI="D005662">Furaldehyde</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019020" MajorTopicYN="N">Directed Molecular Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000431" MajorTopicYN="N">Ethanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047309" MajorTopicYN="N">Flavones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005662" MajorTopicYN="N">Furaldehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19517136</ArticleId>
<ArticleId IdType="doi">10.1007/s00438-009-0461-7</ArticleId>
<ArticleId IdType="pmc">PMC3025311</ArticleId>
<ArticleId IdType="mid">NIHMS158077</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Nov;73(1):27-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):7866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jul;69(7):4076-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12839784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 1999;87(2):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16232445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 May 1;363(Pt 3):769-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11964178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Nov;66(1):10-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Apr;78(6):939-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18330568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1999 Feb 20;62(4):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9921153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Dec;81(4):743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18810428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Sep;23(12):857-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2005;6:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16266432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16222531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2004 Sep;31(8):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15338422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2006 Apr 30;23(6):455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Mol Biol Int. 1994 Feb;32(2):379-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8019442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1985 Mar;27(3):308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18553674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2005 Spring;121-124:451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2000 Jun;53(6):701-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10919330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2005 Oct;2(10):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2002 Mar 1;302(1):52-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Methods. 2007 Mar;68(3):486-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IET Syst Biol. 2009 May;3(3):203-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Feb 5;85(3):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14748081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 6;303(5659):799-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Ma, Menggen" sort="Ma, Menggen" uniqKey="Ma M" first="Menggen" last="Ma">Menggen Ma</name>
<name sortKey="Song, Mingzhou" sort="Song, Mingzhou" uniqKey="Song M" first="Mingzhou" last="Song">Mingzhou Song</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Liu, Z Lewis" sort="Liu, Z Lewis" uniqKey="Liu Z" first="Z Lewis" last="Liu">Z Lewis Liu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19517136
   |texte=   Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19517136" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020